Improved hybrid models for multi-step wind speed forecasting by Staff Writers Beijing (SPX) Mar 14, 2019
To help mitigate global warming by reducing the emissions that are largely responsible, wind is widely expected to become an alternative source of energy. Wind power generation utilizes the surface atmosphere, where movement blows the wind turbine to generate the power output. However, due to the turbulence in the near-surface layer, wind speeds show strong variation and disturbance characteristics, which creates instability for wind power generation. This in turn seriously threatens the security of the power grid system. Therefore, to ensure the safety and stability of the power grid, reliable predictions of wind speed and power generation at the local scale for wind farms are essential. In a paper recently published in Atmospheric and Oceanic Science Letters, Ye Zhang from Hebei Normal University and her co-authors from the Institute of Atmospheric Physics and Lanzhou University, developed three hybrid multi-step wind speed forecasting models and compared them with each other and with earlier proposed wind speed forecasting models. The three models are based on wavelet decomposition (WD), the Cuckoo search (CS) optimization algorithm, and a wavelet neural network (WNN). Respectively, they are referred to as CS-WD-ANN (where ANN means 'artificial neural network'), CS-WNN, and CS-WD-WNN. Wind speed data from two wind farms located in Shandong, eastern China, were used in the study. The results showed that CS-WD-WNN performs best among the three developed hybrid models, with minimum statistical errors, while CS-WD-ANN performs worst. From the comparison with earlier proposed wind forecasting models, including BPNN, Persist, ARIMA, WNN, and PSO-WD-WNN, CS-WD-WNN was still found to be the superior model. Essentially, employment of the CS algorithm in the developed hybrid models showed more of an advantage with respect to the forecasting results compared with other models. "Overall, we found the CS-WD-WNN model performs well in wind speed prediction, and the accuracy is higher than that of earlier proposed models," concludes Zhang.
UK targets surge in offshore wind power London (AFP) March 7, 2019 Britain wants offshore wind farms to provide one third of the country's electricity by 2030, the government announced Thursday, at a time when its nuclear energy ambitions are stumbling. Working with the private sector to take advantage of the island nation's surrounding waters to power homes and businesses with increasing amounts of renewable energy, the government said the Offshore Wind Sector Deal will slash the UK's reliance on fossil fuels. Offshore wind currently provides about seven perce ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |