|
. | . |
|
by Staff Writers Corvallis OR (SPX) Jun 17, 2014
US researchers have carried out an environmental lifecycle assessment of 2-megawatt wind turbines mooted for a large wind farm in the US Pacific Northwest. Writing in the International Journal of Sustainable Manufacturing, they conclude that in terms of cumulative energy payback, or the time to produce the amount of energy required of production and installation, a wind turbine with a working life of 20 years will offer a net benefit within five to eight months of being brought online. Wind turbines are frequently touted as the answer to sustainable electricity production especially if coupled to high-capacity storage for times when the wind speed is either side of their working range. They offer a power source that has essentially zero carbon emissions. Coupled lifecycle cost and environmental assessment in terms of energy use and emissions of manufacturing, installation, maintenance and turbine end-of-life processing seems to be limited in the discussions for and against these devices. "All forms of energy generation require the conversion of natural resource inputs, which are attendant with environmental impacts and costs that must be quantified to make appropriate energy system development decisions," explain Karl Haapala and Preedanood Prempreeda of Oregon State University, in Corvallis. The pair has carried out a life cycle assessment (LCA) of 2MW wind turbines in order to identify the net environmental impact of the production and use of such devices for electricity production. An LCA takes into account sourcing of key raw materials (steel, copper, fiberglass, plastics, concrete, and other materials), transport, manufacturing, installation of the turbine, ongoing maintenance through its anticipated two decades of useful life and, finally, the impacts of recycling and disposal at end-of-life. Their analysis shows that the vast majority of predicted environmental impacts would be caused by materials production and manufacturing processes. However, the payback for the associated energy use is within about 6 months, the team found. It is likely that even in a worst case scenario, lifetime energy requirements for each turbine will be subsumed by the first year of active use. Thus, for the 19 subsequent years, each turbine will, in effect, power over 500 households without consuming electricity generated using conventional energy sources. Haapala, K.R. and Prempreeda, P. (2014) 'Comparative life cycle assessment of 2.0 MW wind turbines', Int. J. Sustainable Manufacturing, Vol. 3, No. 2, pp.170-185.
Related Links Oregon State University Wind Energy News at Wind Daily
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service. |