Wind Energy News  
WIND DAILY
New simulations of wind power generation
by Staff Writers
Zurich, Switzerland (SPX) Sep 07, 2016


File image.

There has been a massive boom in wind power capacity both in Europe and worldwide. In 2015 global installed capacity was around 350 gigawatt (GW), with 135 GW installed in Europe, distributed across some 87,000 wind turbines. Wind power now provides a bigger share (13 percent) of electricity than nuclear power stations. In countries such as Spain, Denmark and Germany, the amount of wind power already installed is in theory enough to cover nationwide demand for electricity under ideal conditions, i.e. maximum wind power output and low consumer demand.

However, the amount of installed capacity says very little about how much electricity is actually fed into the national grid by a country's wind fleet. Unlike nuclear power, wind is by nature harder to predict. This makes it difficult to connect wind farms to existing power grids.

Both energy researchers and providers therefore need to simulate electricity production across very short time intervals to accurately predict how high the load could be at any given point in time.

Recently, researchers have started performing such simulations with the help of "reanalysis" models: global meteorological models fed with measured data such as from weather stations and satellites, which process these measurements into a coherent world-wide simulation of atmospheric conditions.

Critical review of weather models
However, there is one major drawback with data from reanalysis: meteorological models simplify the real world do not provide adequately detailed simulation of factors that are important for wind power, such as the topology around a wind farm. So, if data from reanalysis models is used to simulate wind power production without further correction, the models are liable to produce a systematically distorted picture. Despite this, a number of studies have been published on wind power generation that are based on uncorrected data.

This inspired the energy researcher Stefan Pfenninger from ETH Zurich and his colleague Iain Staffell from Imperial College London to create a large database of recorded electricity output from wind farms across Europe, as well as country-wide production data reported by transmission network operators, and to use that database to derive correction factors for each European country. They then use their Virtual Wind Farm Model (VWF) to simulate wind power production in Europe over the course of 20 years.

Fresh simulation of output
By adopting a rigorous approach, the two researchers have managed to create a more realistic picture of wind energy output in Europe. Their corrected simulations show that the uncorrected simulations used in other studies have overestimated wind power output in north-western Europe by up to 50 percent, while underestimating it by as much as 30 percent in southern Europe.

The researchers also recalculated the capacity factors for Europe: the current European average is 24.2 percent, compared with 32.4 percent in the UK and 19.5 percent in Germany. The European average only varies by a few percent from one year to the next. "This fluctuation is much less than the deviation observed in individual countries", says Pfenninger. "The bigger the wind fleet and the wider the geographical footprint, the smaller the fluctuations on the supply side". It is therefore important for national grids to be interconnected more efficiently so as to be able to offset power outages in one region with surplus output in another country.

The simulation also shows that capacity factors are improving, partly thanks to technological advances and better offshore locations. Britain's wind parks are now 25 percent more productive than they were 10 years ago.

North Sea countries in expansion mode
Given the current state of planning, Pfenninger and Staffell predict that the average capacity factor for Europe could rise by a third, to more than 31 percent. "Countries adjoining the North Sea should experience particularly strong growth in the near future", says Pfenninger. The UK could achieve a capacity factor of almost 40 percent, and Germany close to 30 percent.

But in order for planners, network operators, utility companies and other scientists to be able to continue using the simulations developed by the energy researchers, Pfenninger and Staffell have devised an interactive web application, where the European data sets are also available as a download. The web platform also gives access to data from a study, published at the same time, which develops simulation of Europe's photovoltaic power output. Pfenninger and Staffell have been beta testing Renewables.ninja for six months and now have users from 54 institutions across 22 countries, including the International Energy Agency and IRENA.

Staffell I, Pfenninger S. Using Bias-corrected Reanalysis to Simulate Current and Future Wind Power Output. Energy, published online 5th September 2016. doi: 10.1016/j.energy.2016.08.068


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
ETH Zurich
Wind Energy News at Wind Daily






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
WIND DAILY
Annual wind report confirms tech advancements, improved performance, and low energy prices
Berkeley CA (SPX) Aug 19, 2016
Wind energy pricing remains attractive to utility and commercial purchasers, according to an annual report released by the U.S. Department of Energy and prepared by the Electricity Markets and Policy Group at Lawrence Berkeley National Laboratory (Berkeley Lab). Prices offered by newly built wind projects are averaging around 2 cents /kWh, driven lower by technology advancements and cost reducti ... read more


WIND DAILY
Rosneft and Gazprom Discuss New Joint Projects With Japanese Companies

May defends delays on China-backed nuclear project

EDF board members sue to overturn Hinkley Point plan

Philippines eyes reviving mothballed nuclear plant

WIND DAILY
Recurrent Energy announces commercial operation of 100MW Mustang solar power project

Growing PV pipelines across Europe await policy support

A new technique opens up advanced solar cells

Canada talks up low-carbon ties with China

WIND DAILY
Croatian Pig Farm Uses Synergies to Generate Energy

Biofuels not as 'green' as many think

Biofuels could increase rather than decrease C02 emissions

Scientists solve puzzle of converting gaseous carbon dioxide to fuel

WIND DAILY
Annual wind report confirms tech advancements, improved performance, and low energy prices

OX2 wins EPC contract for 112 MW wind power in Norway

Wind power fiercer than expected

E.ON starts new wind farm in Texas

WIND DAILY
Chinese giant to buy Pakistani power company for $1.6 bn

Economy of energy-hungry India may face headwinds

Summer spells cold showers for Russians as hot water cut

Foreigners barred from buying Australia's largest energy grid

WIND DAILY
Fusion facilities at PPPL and Culham, England, could provide path to limitless energy

Flywheel technology could create new savings for light rail transit

Extending battery life for mobile devices

New class of fuel cells offer increased flexibility, lower cost

WIND DAILY
Fusion facilities at PPPL and Culham, England, could provide path to limitless energy

Flywheel technology could create new savings for light rail transit

Extending battery life for mobile devices

New class of fuel cells offer increased flexibility, lower cost

WIND DAILY
Germany accuses Fiat of car emissions cheating

Could A Lithium Shortage De-Rail The Electric Car Boom

Dubai debuts driverless minibus

EU urges Volkswagen crackdown after 'dieselgate'









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.